Noda iterations for generalized eigenproblems following Perron-Frobenius theory
From MaRDI portal
Publication:670491
DOI10.1007/s11075-018-0512-4OpenAlexW2789742729WikidataQ130115456 ScholiaQ130115456MaRDI QIDQ670491
Wen Li, Seak Weng Vong, Xiao Shan Chen, Hong-guo Xu
Publication date: 18 March 2019
Published in: Numerical Algorithms (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s11075-018-0512-4
Numerical computation of eigenvalues and eigenvectors of matrices (65F15) Numerical linear algebra (65F99)
Related Items (4)
Harmonic analysis on graphs via Bratteli diagrams and path-space measures ⋮ Noda iteration for computing generalized tensor eigenpairs ⋮ Two-step Noda iteration for irreducible nonnegative matrices ⋮ Inexact generalized Noda iterations for generalized eigenproblems
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Sign-preserving of principal eigenfunctions in P1 finite element approximation of eigenvalue problems of second-order elliptic operators
- The Frobenius theorem, its Solow-Samuelson extension and the Kuhn-Tucker theorem
- Inverse iteration for calculating the spectral radius of a non-negative irreducible matrix
- A positivity preserving inexact Noda iteration for computing the smallest eigenpair of a large irreducible \(M\)-matrix
- Note on the computation of the maximal eigenvalue of a non-negative irreducible matrix
- Matrix Algorithms
- A Positivity Preserving Inverse Iteration for Finding the Perron Pair of an Irreducible Nonnegative Third Order Tensor
- Templates for the Solution of Algebraic Eigenvalue Problems
- Computing the Smallest Eigenvalue of an M-Matrix
- Perron-frobenius theory for a generalized eigenproblem
This page was built for publication: Noda iterations for generalized eigenproblems following Perron-Frobenius theory