\(S\)-units attached to genus 3 hyperelliptic curves
From MaRDI portal
Publication:677618
DOI10.1006/jnth.1997.2073zbMath0879.11031OpenAlexW2074610298MaRDI QIDQ677618
Publication date: 16 November 1997
Published in: Journal of Number Theory (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1006/jnth.1997.2073
Jacobians, Prym varieties (14H40) [https://portal.mardi4nfdi.de/w/index.php?title=+Special%3ASearch&search=%22Curves+of+arbitrary+genus+or+genus+%28%0D%0Ae+1%29+over+global+fields%22&go=Go Curves of arbitrary genus or genus ( e 1) over global fields (11G30)]
Related Items (2)
On an analogue of the Lutz-Nagell theorem for hyperelliptic curves ⋮ On a unit group generated by special values of Siegel modular functions
Cites Work
- Tate-Shafarevich groups and L-functions of elliptic curves with complex multiplication
- The ``main conjectures of Iwasawa theory for imaginary quadratic fields
- Tata lectures on theta. III
- On the conjecture of Birch and Swinnerton-Dyer
- Quelques propriétés arithmétiques des points de $3$-division de la jacobienne de $y^2 = x^5 - 1$
- On the Discriminant of a Hyperelliptic Curve
- A Generalization of a Formula of Eisenstein
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: \(S\)-units attached to genus 3 hyperelliptic curves