A family of affine quantum group invariant integrable extensions of the Hubbard Hamiltonian
From MaRDI portal
Publication:677652
DOI10.1016/S0550-3213(97)00067-9zbMath0925.82066arXivcond-mat/9609183OpenAlexW1994066407MaRDI QIDQ677652
Publication date: 13 April 1997
Published in: Nuclear Physics. B (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/cond-mat/9609183
Quantum groups and related algebraic methods applied to problems in quantum theory (81R50) Statistical mechanics of superconductors (82D55) Exactly solvable models; Bethe ansatz (82B23) Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics (82B20)
Related Items (4)
SLq(2) GLOBAL SYMMETRY FOR FOUR-STATE QUANTUM CHAINS ⋮ Integrable chain model with additional staggered model parameter ⋮ Explicit R-matrices for inhomogeneous 3D chiral Potts models: integrability and the action formulation for IM ⋮ Bethe Ansatz and thermodynamic limit of affine quantum group invariant extensions of the t–J model
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On the connection between the one-dimensional \(S=1/2\) Heisenberg chain and Haldane-Shastry model
- A q-difference analogue of \(U({\mathfrak g})\) and the Yang-Baxter equation
- A \(q\)-analogue of \(U(\mathfrak{gl}(N+1))\), Hecke algebra, and the Yang-Baxter equation
- Quantum affine algebras
- Diagonalization of the \(XXZ\) Hamiltonian by vertex operators
- Quantum-group-invariant integrable \(n\)-state vertex models with periodic boundary conditions
- FINITE CHAINS WITH QUANTUM AFFINE SYMMETRIES
- New exactly solvable model of strongly correlated electrons motivated by high-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="italic">T</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="italic">c</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math>superconductivity
- On a quantum group invariant spin chain with non-local boundary conditions
This page was built for publication: A family of affine quantum group invariant integrable extensions of the Hubbard Hamiltonian