On the prime density of Lucas sequences
From MaRDI portal
Publication:679108
DOI10.5802/jtnb.181zbMath0873.11058OpenAlexW2087342790MaRDI QIDQ679108
Publication date: 30 October 1997
Published in: Journal de Théorie des Nombres de Bordeaux (Search for Journal in Brave)
Full work available at URL: http://www.numdam.org/item?id=JTNB_1996__8_2_449_0
Quadratic extensions (11R11) Density, gaps, topology (11B05) Fibonacci and Lucas numbers and polynomials and generalizations (11B39)
Related Items (3)
Counting monic irreducible polynomials \(P\) in \(\mathbb F_q[X\) for which order of \(X\pmod P\) is odd] ⋮ On the divisibility of the rank of appearance of a Lucas sequence ⋮ Positive lower density for prime divisors of generic linear recurrences
Cites Work
- Unnamed Item
- Unnamed Item
- The set of primes dividing the Lucas numbers has density 2/3
- A conjecture of Krishnamurthy on decimal periods and some allied problems
- Counting divisors of Lucas numbers
- Über die Dichte der Primzahlen \(p\), für die eine vorgegebene ganzrationale Zahl \(a\neq 0\) von gerader bzw. ungerader Ordnung \(\mod p\) ist
- Arithmetische Theorie der Normalkörper von 2-Potenzgrad mit Diedergruppe. (Arithmetic theory of normal fields of 2-power degree with dihedral group)
- On the density of some sets of primes, IV
- The Number of Real Quadratic Fields Having Units of Negative Norm
- Density of prime divisors of linear recurrences
This page was built for publication: On the prime density of Lucas sequences