David Hilbert: The theory of algebraic number fields. Jahresber. Deutsche Math. Ver. 4 (1897), 175--546
DOI10.1365/s13291-017-0168-3zbMath1397.01016OpenAlexW2689194049MaRDI QIDQ680847
Publication date: 29 January 2018
Published in: Jahresbericht der Deutschen Mathematiker-Vereinigung (DMV) (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1365/s13291-017-0168-3
reciprocity lawalgebraic number fieldsgenus theorylogarithmic derivativefundamental theorem of ideal theoryHilbert norm-residue symbolZahlbericht
History of mathematics in the 20th century (01A60) History of number theory (11-03) Algebraic numbers; rings of algebraic integers (11R04) History of mathematics in the 19th century (01A55) Power residues, reciprocity (11A15)
Related Items (2)
Cites Work
- Emil Artin and Helmut Hasse. The correspondence 1923--1958. Translated from the German by Franz Lemmermeyer
- Number theory of the Greeks. II: Gauss lemmas and Riesz rings
- The Frattini subgroup of a \(p\)-group
- Jacobi and Kummer's ideal numbers
- Primes of degree one and algebraic cases of Čebotarev's theorem
- The background of Kummer's proof of Fermat's last theorem for regular primes
- Euclidean number fields of large degree
- Galois action on class groups
- Reciprocity laws and Galois representations: recent breakthroughs
- On knots in algebraic number theory.
- Cyclotomic Fields and Zeta Values
- Totale Normenreste, die keine Normen sind, als Erzeuger nichtabelscher Körpererweiterungen. II.
- David Hilbert and his mathematical work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: David Hilbert: The theory of algebraic number fields. Jahresber. Deutsche Math. Ver. 4 (1897), 175--546