Gromov-Witten theory and cycle-valued modular forms
From MaRDI portal
Publication:683516
DOI10.1515/crelle-2015-0019zbMath1423.14321arXiv1206.3879OpenAlexW1520055797MaRDI QIDQ683516
Yongbin Ruan, Yefeng Shen, Todor Milanov
Publication date: 8 February 2018
Published in: Journal für die Reine und Angewandte Mathematik (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1206.3879
Gromov-Witten invariants, quantum cohomology, Gopakumar-Vafa invariants, Donaldson-Thomas invariants (algebro-geometric aspects) (14N35) Gromov-Witten invariants, quantum cohomology, Frobenius manifolds (53D45) Mirror symmetry (algebro-geometric aspects) (14J33)
Related Items
Global mirror symmetry for invertible simple elliptic singularities, Holomorphic anomaly equations and the Igusa cusp form conjecture, Gromov-Witten theory and cycle-valued modular forms, A Fock sheaf for Givental quantization, Gromov-Witten theory of elliptic fibrations: Jacobi forms and holomorphic anomaly equations, Holomorphic anomaly equation for and the Nekrasov-Shatashvili limit of local, Gromov-Witten Theory of Quotients of Fermat Calabi-Yau varieties
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- The structure of 2D semi-simple field theories
- A generalized construction of mirror manifolds
- Gromov-Witten theory and cycle-valued modular forms
- Virasoro constraints for target curves
- On the convergence of Gromov-Witten potentials and Givental's formula
- Topological strings and (almost) modular forms
- Einfach-elliptische Singularitäten
- On the semi-universal deformation of a simple-elliptic hypersurface singularity. I: Unimodularity
- Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes
- Gromov-Witten classes, quantum cohomology, and enumerative geometry
- A global mirror symmetry framework for the Landau-Ginzburg/Calabi-Yau correspondence
- Curves on K 3 surfaces and modular forms
- Topological String Theory on Compact Calabi–Yau: Modularity and Boundary Conditions