Representations of Archimedean Riesz spaces by continuous functions
From MaRDI portal
Publication:685152
DOI10.1007/BF00046643zbMath0802.46019OpenAlexW4233029071MaRDI QIDQ685152
Publication date: 30 September 1993
Published in: Acta Applicandae Mathematicae (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/bf00046643
Lattices of continuous, differentiable or analytic functions (46E05) Ordered topological linear spaces, vector lattices (46A40) Ordered normed spaces (46B40)
Related Items (2)
Representations of Archimedean Riesz spaces. - A survey ⋮ Compact spaces associated to separable Banach lattices
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Characterizations and classifications of some classical Banach spaces
- The Choquet theory and representation of ordered Banach spaces
- Measures defined by abstract \(L_{p}\) spaces
- La théorie des cônes biréticulés. (The theory of bi-lattice-ordered cones)
- On the representation of Banach lattices by continuous numerical functions
- Ordnungsstetigkeit in Banachverbänden
- Concrete representation of abstract (L)-spaces and the mean ergodic theorem
- Concrete representation of abstract (M)-spaces. (A characterization of the space of continuous functions.)
- Concrete representation of (M)-spaces
- The order boundedness of band preserving operators on uniformly complete vector lattices
- Orthomorphisms of archimedean vector lattices
- Unique Representation of Archimedean Lattice Groups and Normal Archimedean Lattice Rings
- The Structure and Ideal Theory of the Predual of a Banach Lattice
- A Stone-Weierstrass theorem for Banach lattices
- Über das System aller stetigen Funktionen auf einem topologischen Raum
- Über die Charakterisierung des allgemeinen $C$-Raumes
- On the representation of the vector lattice
This page was built for publication: Representations of Archimedean Riesz spaces by continuous functions