Geometric and analytic boundary invariants on pseudoconvex domains. Comparison results
DOI10.1007/BF02921392zbMath0786.32016MaRDI QIDQ685948
Klas Diederich, Gregor Herbort
Publication date: 6 December 1993
Published in: The Journal of Geometric Analysis (Search for Journal in Brave)
Bergman kernelfinite typeBergman metricpseudoconvex domains\(\overline\partial\)-Neumann problemmultitypelocal analytic invariantslocal geometric invariantspseudoconvex extendability
Invariant metrics and pseudodistances in several complex variables (32F45) (overlinepartial) and (overlinepartial)-Neumann operators (32W05) Integral representations; canonical kernels (Szeg?, Bergman, etc.) (32A25) Pseudoconvex domains (32T99)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On the extension of \(L^ 2\) holomorphic functions
- Necessary conditions for subellipticity of the \({\bar\partial}\)-Neumann problem
- Boundary behavior of the Bergman kernel function on pseudoconvex domains
- The Bergman kernel on uniformly extendable pseudoconvex domains
- Boundary invariants of pseudoconvex domains
- Subelliptic estimates for the \({\bar \partial}\)-Neumann problem on pseudoconvex domains
- Hölder estimates on domains of complex dimension two and on three- dimensional CR manifolds
- Estimates of invariant metrics on pseudoconvex domains of dimension two
- Estimates for the Bergman and Szegö kernels in \({\mathbb{C}}^ 2\)
- Boundary behavior of the Bergman kernel function in \({\mathbb{C}}^ 2\)
- Parabolic invariant theory in complex analysis
- Real hypersurfaces, orders of contact, and applications
- Lower bounds on the Bergman metric near a point of finite type
- Proper holomorphic maps onto pseudoconvex domains with real-analytic boundary
- Subellipticity of the \(\overline\partial\)-Neumann problem on pseudo- convex domains: sufficient conditions
- A lower bound on the Kobayashi metric near a point of finite type in \(\mathbb{C} ^ n\)
- Construction of p.s.h. functions on weakly pseudoconvex domains
- The Bergman kernel and biholomorphic mappings of pseudoconvex domains
- Logarithmic growth of the Bergman kernel for weakly pseudoconvex domains in \({\mathbb C}^ 3\) of finite type
- Boundary behavior of \(\bar \partial\) on weakly pseudo-convex manifolds of dimension two
- Regularity Properties of the ∂ b Equation on Weakly Pseudoconvex CR Manifolds of Dimension 3
This page was built for publication: Geometric and analytic boundary invariants on pseudoconvex domains. Comparison results