Toeplitz preconditioners for Hermitian Toeplitz systems
DOI10.1016/0024-3795(93)90226-EzbMath0783.65042MaRDI QIDQ686377
Raymond Honfu Chan, Michael Kwok-Po Ng
Publication date: 13 October 1993
Published in: Linear Algebra and its Applications (Search for Journal in Brave)
Fourier coefficientselliptic boundary value problemspreconditioned conjugate gradient methodscirculant preconditionerskernel functionsHermitian positive definite Toeplitz systems
Boundary value problems for second-order elliptic equations (35J25) Hermitian, skew-Hermitian, and related matrices (15B57) Iterative numerical methods for linear systems (65F10) Numerical computation of matrix norms, conditioning, scaling (65F35) Finite difference methods for boundary value problems involving PDEs (65N06) Conditioning of matrices (15A12)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- New inversion formulas for matrices classified in terms of their distance from Toeplitz matrices
- A decomposition of Toeplitz matrices and optimal circulant preconditioning
- A Proposal for Toeplitz Matrix Calculations
- An Optimal Circulant Preconditioner for Toeplitz Systems
- Fast solution of toeplitz systems of equations and computation of Padé approximants
- Toeplitz Preconditioners for Toeplitz Systems with Nonnegative Generating Functions
- Design and analysis of Toeplitz preconditioners
- Optimal and Superoptimal Circulant Preconditioners
- Circulant and Skewcirculant Matrices for Solving Toeplitz Matrix Problems
- Circulant Preconditioners Constructed from Kernels
- Fast Band-Toeplitz Preconditioners for Hermitian Toeplitz Systems
- Circulant Preconditioners for Hermitian Toeplitz Systems
- An Algorithm for the Inversion of Finite Toeplitz Matrices