Minimax estimation in linear regression with singular covariance structure and convex polyhedral constraints
DOI10.1016/0378-3758(93)90123-NzbMath0778.62061OpenAlexW1975376739MaRDI QIDQ689386
Götz Trenkler, Peter Stahlecker
Publication date: 2 December 1993
Published in: Journal of Statistical Planning and Inference (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0378-3758(93)90123-n
singular covariance matrixapproximate linear minimax estimationconvex, compact polyhedral constraintsexact minimax solutiongeneral quadratic losslinear affine minimax estimationmaximal weighted risk
Estimation in multivariate analysis (62H12) Linear regression; mixed models (62J05) Minimax procedures in statistical decision theory (62C20)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Some properties of \([tr(Q^{2p})^{1/2p}\) with application to linear minimax estimation]
- Minimax estimators that shift towards a hypersphere for location vectors of spherically symmetric distributions
- Minimax linear regression estimation with symmetric parameter restrictions
- A robust generalized Bayes estimator and confidence region for a multivariate normal mean
- Minimax estimation of the mean of a normal distribution when the parameter space is restricted
- Selecting a minimax estimator of a multivariate normal mean
- A numerical method for an approximate minimax estimator in linear regression
- Characterization of minimax linear estimators in linear regression
- Approximate minimax estimation in linear regression: a simulation study
- Approximate linear minimax estimation in regression analysis with ellipsoidal constraints
- Approximate minimax estimation in linear regression: theoretical results
- Quasi minimax estimation in the linear regression model
- A minimax linear estimator for linear parameters under restrictions in form of inequalities
- Bayes, Admissible, and Minimax Linear Estimators in Linear Models with Restricted Parameter Space
- Another Proof that Convex Functions are Locally Lipschitz
This page was built for publication: Minimax estimation in linear regression with singular covariance structure and convex polyhedral constraints