Preliminary test estimation of a vector of parametric functions in the general Gauss--Markov model
DOI10.1016/0378-3758(93)90126-QzbMath0779.62047OpenAlexW2022461197MaRDI QIDQ689391
Jerzy K. Baksalary, Pawel R. Pordzik
Publication date: 2 December 1993
Published in: Journal of Statistical Planning and Inference (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0378-3758(93)90126-q
nuisance parametersblock designpreliminary test estimationgeneral Gauss-Markov modelfixed- effects modelgiven vector of estimable parametric functionsmain parametersmatrix riskssingular linear modelvector of treatment contrasts
Estimation in multivariate analysis (62H12) Linear regression; mixed models (62J05) Hypothesis testing in multivariate analysis (62H15)
Related Items (2)
Cites Work
- Inverse-partitioned-matrix method for the general Gauss-Markov model with linear restrictions
- Estimability in partitioned linear models
- Implied linear restrictions in the general Gauss-Markov model
- Mean square error tests for restrictions in singular linear models
- A study of the equivalence between a gauss-markoff model and its augmentation by nuisance parameters
- Eine anmerkung zu der arbeit ”ldentifiability and estimabllity“ von H. Bunke und O.Bunke
- The Statistical Consequences of Preliminary Test Estimators in Regression
- A Test of the Mean Square Error Criterion for Restrictions in Linear Regression
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Preliminary test estimation of a vector of parametric functions in the general Gauss--Markov model