Two extensions of Hamburger's theorems (on the functional equation of the zeta-function)
From MaRDI portal
Publication:690440
DOI10.1016/J.EXMATH.2012.03.003zbMath1257.11078arXiv1106.4749OpenAlexW3106268908MaRDI QIDQ690440
Publication date: 27 November 2012
Published in: Expositiones Mathematicae (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1106.4749
Riemann zeta functionfunctional equationsDirichlet seriesPoisson formulaco-Poisson formulaHamburger theoremTheory of distributions
Operations with distributions and generalized functions (46F10) (zeta (s)) and (L(s, chi)) (11M06) Langlands (L)-functions; one variable Dirichlet series and functional equations (11F66)
Cites Work
- Unnamed Item
- On Riemann's functional equation
- On Riemann's functional equations
- A converse theorem for Dirichlet \(L\)-functions
- Co-Poisson intertwining
- Über die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen
- Multiplicity results for the functional equation of the Dirichlet L-functions
- Multiplicity results for the functional equation of the Dirichlet L-functions: case p=2
- Sur l'équation fonctionnelle de Riemann et la formule sommatoire de Poisson
- On solutions of Riemann’s functional equation
- On Fourier and Zeta(s)
This page was built for publication: Two extensions of Hamburger's theorems (on the functional equation of the zeta-function)