On the Diophantine equation \(x^2 + 2^a \cdot 19^b = y^n\)
From MaRDI portal
Publication:691675
DOI10.1007/s13226-012-0013-4zbMath1291.11069OpenAlexW2046515981MaRDI QIDQ691675
Gökhan Soydan, Maciej Ulas, Huilin Zhu
Publication date: 3 December 2012
Published in: Indian Journal of Pure \& Applied Mathematics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s13226-012-0013-4
Quadratic extensions (11R11) Class numbers, class groups, discriminants (11R29) Higher degree equations; Fermat's equation (11D41)
Related Items (7)
On the exponential Diophantine equation \(x^2 + 2^a p^b = y^n\) ⋮ Complete solution of the Diophantine Equation $x^{2}+5^{a}\cdot 11^{b}=y^{n}$ ⋮ On the diophantine equation $x^2+2^a3^b73^c=y^n $ ⋮ On the Diophantine equation \(X^{2N}+2^{2\alpha}5^{2\beta}p^{2\gamma}=Z^5\) ⋮ On the Diophantine equation \(x^2+3^a41^b=y^n\) ⋮ On Lebesgue–Ramanujan–Nagell Type Equations ⋮ On the solutions of certain Lebesgue-Ramanujan-Nagell equations
Uses Software
Cites Work
- On the Diophantine equation \(x^2+5^a\cdot 11^b=y^n\)
- On some generalized Lebesgue-Nagell equations
- On the Diophantine equation \(x^2 + p^{2k} = y^n\)
- The diophantine equation \(x^ 2 + 2^ k = y^ n\)
- On Cohn's conjecture concerning the Diophantine equation \(x^2+2^m=y^n\)
- On the diophantine equation \(x^ 2+2^ k=y^ n\)
- The Magma algebra system. I: The user language
- On the equation \(x^2 + 2^a \cdot 3^b = y^n\)
- Existence of primitive divisors of Lucas and Lehmer numbers
- On the Diophantine equation x2+ 2α13β= yn
- ON THE DIOPHANTINE EQUATION x2 + 2a · 5b = yn
- The diophantine equation x² + 19 = yⁿ
- On the Diophantine Equation x 2 + 2 α 5 β 13 γ = y n
- ON THE DIOPHANTINE EQUATION x2 + 5a 13b = yn
This page was built for publication: On the Diophantine equation \(x^2 + 2^a \cdot 19^b = y^n\)