A foliated analogue of one- and two-dimensional Arakelov theory
DOI10.1007/s12188-011-0061-4zbMath1266.53031OpenAlexW2014826618MaRDI QIDQ691973
Publication date: 4 December 2012
Published in: Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s12188-011-0061-4
Grothendieck-Riemann-Roch theoremRiemann-Hurwitz formulaReeb foliationArakelov adjunction formulafoliated metrized spaces
Periodic orbits of vector fields and flows (37C27) Foliations (differential geometric aspects) (53C12) Algebraic numbers; rings of algebraic integers (11R04) Arithmetic varieties and schemes; Arakelov theory; heights (14G40)
Cites Work
- Riemann's mapping theorem for variable metrics
- Real polarizable Hodge structures arising from foliations
- Scaling group flow and Lefschetz trace formula for laminated spaces with \(p\)-adic transversal
- Exchanging the places \(p\) and \(\infty\) in the Leopoldt conjecture
- A REMARK ON A RELATION BETWEEN FOLIATIONS AND NUMBER THEORY
- On tangential cohomology of Riemannian foliations
- Weyl's Lemma, one of many
- LAMINATIONS DANS LES ESPACES PROJECTIFS COMPLEXES
- Number theory and dynamical systems on foliated spaces
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: A foliated analogue of one- and two-dimensional Arakelov theory