A generalization of a Levitin and Parnovski universal inequality for eigenvalues
From MaRDI portal
Publication:692170
DOI10.1007/S12220-010-9200-XzbMath1252.35212arXiv1012.0704OpenAlexW1994437140MaRDI QIDQ692170
Publication date: 4 December 2012
Published in: The Journal of Geometric Analysis (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1012.0704
Estimates of eigenvalues in context of PDEs (35P15) Spectral problems; spectral geometry; scattering theory on manifolds (58J50) Differential forms in global analysis (58A10) Spectral theory; eigenvalue problems on manifolds (58C40)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- `Universal' inequalities for the eigenvalues of the Hodge de Rham Laplacian
- Extrinsic estimates for eigenvalues of the Laplace operator
- On the first eigenvalue of the Laplacian acting on p-forms
- Eigenvalue estimates on homogeneous manifolds
- On the first eigenvalue of the Laplacian for compact submanifolds of Euclidean space
- The universal eigenvalue bounds of Payne-Pólya-Weinberger, Hile-Protter, and H. C. Yang
- Estimates on eigenvalues of Laplacian
- A unified approach to universal inequalities for eigenvalues of elliptic operators
- Commutators, spectral trace identities, and universal estimates for eigenvalues
- Lower order eigenvalues of Dirichlet Laplacian
- Universal Bounds and Semiclassical Estimates for Eigenvalues of Abstract Schrödinger Operators
- On the Ratio of Consecutive Eigenvalues
- Universal inequalities for the eigenvalues of Laplace and Schrödinger operators on submanifolds
- Construction de laplaciens dont une partie finie du spectre est donnée
- Extrinsic Upper Bounds for Eigenvalues of Dirac-Type Operators
- Some geometric bounds on eigenvalue gaps
- On trace identities and universal eigenvalue estimates for some partial differential operators
- Une inégalité du type Payne-Polya-Weinberger pour le laplacien brut
This page was built for publication: A generalization of a Levitin and Parnovski universal inequality for eigenvalues