Ellis-Gohberg identities for certain orthogonal functions. I: Block matrix generalizations and \({\ell}^2\)-setting
From MaRDI portal
Publication:692577
DOI10.1016/j.indag.2012.05.005zbMath1259.33022OpenAlexW1987661619MaRDI QIDQ692577
F. van Schagen, Marinus A. Kaashoek
Publication date: 6 December 2012
Published in: Indagationes Mathematicae. New Series (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.indag.2012.05.005
Hankel operatorToeplitz operatororthogonal functionsLaurent operator\(J\)-unitary matricesmatrix function identities
Toeplitz operators, Hankel operators, Wiener-Hopf operators (47B35) Other special orthogonal polynomials and functions (33C47)
Related Items (2)
The inverse problem for Ellis-Gohberg orthogonal matrix functions ⋮ Ellis-Gohberg identities for certain orthogonal functions. I: Block matrix generalizations and \({\ell}^2\)-setting
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Ellis-Gohberg identities for certain orthogonal functions. I: Block matrix generalizations and \({\ell}^2\)-setting
- Orthogonal systems related to infinite Hankel matrices
- Classes of linear operators. Vol. II
- Orthogonal systems and convolution operators
- On a class of block Toeplitz matrices
- The inverse problem for orthogonal Krein matrix functions
- An Identity Satisfied by Certain Orthogonal Vector-valued Functions
This page was built for publication: Ellis-Gohberg identities for certain orthogonal functions. I: Block matrix generalizations and \({\ell}^2\)-setting