Goodness-of-fit test of the mark distribution in a point process with non-stationary marks
DOI10.1007/s11222-011-9263-yzbMath1252.62087OpenAlexW2002756961WikidataQ58993089 ScholiaQ58993089MaRDI QIDQ693324
Samuel Soubeyrand, Tomáš Mrkvička, Joël Chadoeuf
Publication date: 7 December 2012
Published in: Statistics and Computing (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s11222-011-9263-y
kernel estimationnuisance parametersmarked point processPoisson point processparametric bootstrapMaya sitesnon-stationary mark distribution
Density estimation (62G07) Asymptotic distribution theory in statistics (62E20) Non-Markovian processes: hypothesis testing (62M07) Point processes (e.g., Poisson, Cox, Hawkes processes) (60G55)
Uses Software
Cites Work
- Monte Carlo tests with nuisance parameters: a general approach to finite-sample inference and nonstandard asymptotics
- Model-based geostatistics.
- Modelling marked point patterns by intensity-marked Cox processes
- Parametric bootstrapping with nuisance parameters
- Assessing goodness of fit of spatially inhomogeneous Poisson processes
- Non‐ and semi‐parametric estimation of interaction in inhomogeneous point patterns
- Semiparametric Regression
- Statistical Analysis and Modelling of Spatial Point Patterns
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Goodness-of-fit test of the mark distribution in a point process with non-stationary marks