Asymptotics for Stieltjes polynomials, Padé-type approximants, and Gauss-Kronrod quadrature
DOI10.1007/BF02786642zbMath1020.41019OpenAlexW2014099887MaRDI QIDQ698309
Manuel Bello-Hernández, Guillermo López Lagomasino, Bernardo de la Calle Ysern, José J. Guadalupe Hernandez
Publication date: 13 May 2003
Published in: Journal d'Analyse Mathématique (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/bf02786642
orthogonal polynomialsMarkov functionsPadé-type approximantsGauss-Kronrod quadratureStieltjes polynomials
Asymptotic approximations, asymptotic expansions (steepest descent, etc.) (41A60) Padé approximation (41A21) Approximate quadratures (41A55)
Related Items (3)
Cites Work
- On the asymptotic behaviour of functions of the second kind and Stieltjes polynomials and on the Gauss-Kronrod quadrature formulas
- Error bounds for Gauss-Kronrod quadrature formulae of analytic functions
- Padé-type approximants of Markov and meromorphic functions
- Extremal polynomials with preassigned zeros and rational approximants
- Multipoint Padé-type approximants. Exact rate of convergence
- Asymptotic properties of Stieltjes polynomials and Gauss-Kronrod quadrature formulae
- Asymptotic behaviour of Stieltjes polynomials for ultraspherical weight functions
- Stieltjes polynomials and functions of the second kind
- ON ASYMPTOTIC PROPERTIES OF POLYNOMIALS ORTHOGONAL ON THE CIRCLE WITH WEIGHTS NOT SATISFYING SZEGÖ'S CONDITION
- Stieltjes Polynomials and Related Quadrature Rules
- Some New Formulae for the Stieltjes Polynomials Relative to Classical Weight Functions
- Positivity of the Weights of Extended Gauss-Legendre Quadrature Rules
- Orthogonal polynomials
- Ultraspherical Gauss--Kronrod Quadrature Is Not Possible for $\lambda > 3$
- Stieltjes polynomials and Lagrange interpolation
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Asymptotics for Stieltjes polynomials, Padé-type approximants, and Gauss-Kronrod quadrature