Mathematical Research Data Initiative
Main page
Recent changes
Random page
Help about MediaWiki
Create a new Item
Create a new Property
Create a new EntitySchema
Merge two items
In other projects
Discussion
View source
View history
Purge
English
Log in

A uniform estimate for quartile operators

From MaRDI portal
Publication:699252
Jump to:navigation, search

DOI10.4171/RMI/313zbMath1023.42004OpenAlexW2030436265MaRDI QIDQ699252

Christoph Thiele

Publication date: 4 November 2003

Published in: Revista Matemática Iberoamericana (Search for Journal in Brave)

Full work available at URL: https://projecteuclid.org/euclid.rmi/1045578695


zbMATH Keywords

bilinear Hilbert transformquartile operatorsWalsh wave packets


Mathematics Subject Classification ID

Special integral transforms (Legendre, Hilbert, etc.) (44A15) Fourier series in special orthogonal functions (Legendre polynomials, Walsh functions, etc.) (42C10) Integral operators (47G10) Conjugate functions, conjugate series, singular integrals (42A50)


Related Items

Uniform estimates on multi-linear operators with modulation symmetry.



Cites Work

  • Unnamed Item
  • \(L^p\) estimates on the bilinear Hilbert transform for \(2<p<\infty\)
  • On Calderón's conjecture
  • The bilinear maximal functions map into \(L^p\) for \(2/3 < p \leq 1\)
  • On convergence and growth of partial sums of Fourier series
  • L p estimates for the bilinear Hilbert transform
  • On Calderón’s conjecture for the bilinear Hilbert transform
  • The quartile operator and pointwise convergence of Walsh series
  • Sur la convergence presque partout des séries de Fourier-Walsh des fonctions de l'espace L²(0,1)
  • The maximal quartile operator
Retrieved from "https://portal.mardi4nfdi.de/w/index.php?title=Publication:699252&oldid=12609397"
Tools
What links here
Related changes
Special pages
Printable version
Permanent link
Page information
MaRDI portal item
This page was last edited on 30 January 2024, at 10:54.
Privacy policy
About MaRDI portal
Disclaimers
Imprint
Powered by MediaWiki