Coisotropic submanifolds in Poisson geometry and branes in the Poisson sigma model
DOI10.1007/s11005-004-0609-7zbMath1065.53063arXivmath/0309180OpenAlexW3104786246MaRDI QIDQ703995
Giovanni Felder, Alberto Sergio Cattaneo
Publication date: 12 January 2005
Published in: Letters in Mathematical Physics (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/math/0309180
Quantization in field theory; cohomological methods (81T70) String and superstring theories; other extended objects (e.g., branes) in quantum field theory (81T30) Poisson manifolds; Poisson groupoids and algebroids (53D17) Momentum maps; symplectic reduction (53D20) Deformation quantization, star products (53D55)
Related Items (48)
Cites Work
- The local structure of Poisson manifolds
- Quantum and classical pseudogroups. I: Union pseudogroups and their quantization
- Coisotropic calculus and Poisson groupoids
- Two-dimensional gravity and nonlinear gauge theory
- From local to global deformation quantization of Poisson manifolds
- Remarks on A-branes, mirror symmetry, and the Fukaya category
- Integrability of Lie brackets
- A path integral approach to the Kontsevich quantization formula.
- On the integration of Poisson manifolds, Lie algebroids, and coisotropic submanifolds
- Deformation quantization of Poisson manifolds
- POISSON STRUCTURE INDUCED (TOPOLOGICAL) FIELD THEORIES
- The Geometry of the Master Equation and Topological Quantum Field Theory
- Symplectic groupoids and Poisson manifolds
- On the AKSZ formulation of the Poisson sigma model.
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Coisotropic submanifolds in Poisson geometry and branes in the Poisson sigma model