Proof of a conjecture of Zahariuta concerning a problem of Kolmogorov on the \(\epsilon\)-entropy
From MaRDI portal
Publication:706133
DOI10.1007/s00222-004-0372-5zbMath1066.32031OpenAlexW2083564471WikidataQ123002295 ScholiaQ123002295MaRDI QIDQ706133
Publication date: 2 February 2005
Published in: Inventiones Mathematicae (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s00222-004-0372-5
plurisubharmonic functionpluricomplex Green functionpseudoconvex domainholomorphically convex compact setKolmogorov's problemrelative extremal functionupper semicontinuous regularizationZahariuta's conjecture
Related Items (10)
New solution of a problem of Kolmogorov on width asymptotics in holomorphic function spaces ⋮ Pluricapacity and approximation numbers of composition operators ⋮ Extendible bases and Kolmogorov problem on asymptotics of entropy and widths of some class of analytic functions ⋮ Approximation and entropy numbers of composition operators ⋮ On asymptotics of entropy of a class of analytic functions ⋮ Polynomial convexity, special polynomial polyhedra and applications. ⋮ On Lelong-Bremermann Lemma ⋮ Polynomial convexity, special polynomial polyhedra and the pluricomplex Green function for a compact set in \(\mathbb C^n\) ⋮ Some examples of composition operators and their approximation numbers on the Hardy space of the bidisk ⋮ Plurisubharmonic approximation and boundary values of plurisubharmonic functions
Cites Work
- Extremal plurisubharmonic functions and pluripolar sets in \({\mathbb C}^2\)
- A new capacity for plurisubharmonic functions
- Faber-Erokhin basic functions in the neighborhood of several continua
- Mesures de Monge-Ampère et mesures pluriharmoniques. (Monge-Ampère measures and pluriharmonic measures)
- On the extension of L 2 holomorphic functions. II
- Envelopes of continuous, plurisubharmonic functions
- Analysis II. Convex analysis and approximation theory. Transl. from the Russian by D. Newton
- The Dirichlet problem for a complex Monge-Ampère equation
- Estimates of n-diameters of some classes of functions analytic on Riemann surfaces
- Rational approximation and \(n\)-dimensional diameter
- DIAMETERS OF SETS IN FUNCTION SPACES AND THE THEORY OF BEST APPROXIMATIONS
- Imbedding of Holomorphically Complete Complex Spaces
- APPROXIMATE DIMENSION AND BASES IN NUCLEAR SPACES
- Extremal plurisubharmonic functions and invariant pseudodistances
- Widths and entropy
- Extremal plurisubharmonic functions in $C^N$
- La métrique de Kobayashi et la représentation des domaines sur la boule
- Plurisubharmonic measures and capacities on complex manifolds
- Экстремальные плюрисубгармонические функции, ортогональные многочлены и теорема Бернштейна-Уолша для аналитических функций многих комплексных переменных
- A.N. Kolmogorov and approximation theory
- Pluricomplex Green function, capacitative notions, and approximation problems in C^n
- The absolute 𝜀-entropy of metric spaces
- KOLMOGOROV'S WORK ON $ \varepsilon$-ENTROPY OF FUNCTIONAL CLASSES AND THE SUPERPOSITION OF FUNCTIONS
- Mappings of Partially Analytic Spaces
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Proof of a conjecture of Zahariuta concerning a problem of Kolmogorov on the \(\epsilon\)-entropy