A Galerkin method for mixed parabolic-elliptic partial differential equations
DOI10.1007/s00211-010-0308-5zbMath1203.65188OpenAlexW2067622021MaRDI QIDQ707579
Publication date: 8 October 2010
Published in: Numerische Mathematik (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s00211-010-0308-5
stabilityconvergencefinite element methoderror estimateunicityfully discrete Galerkin-Euler-backward discretizationmixed elliptic-parabolic problemregularization by penalty
PDEs of mixed type (35M10) Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs (65M60) Error bounds for initial value and initial-boundary value problems involving PDEs (65M15)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A new family of mixed finite elements in \({\mathbb{R}}^ 3\)
- Estimations des erreurs de meilleure approximation polynomiale et d'interpolation de Lagrange dans les espaces de Sobolev d'ordre non entier. (Estimation of the best polynomial approximation error and the Lagrange interpolation error in fractional-order Sobolev spaces)
- Mixed finite elements in \(\mathbb{R}^3\)
- Adaptive Finite Element Methods for Parabolic Problems I: A Linear Model Problem
- On the Smoothing Property of the Galerkin Method for Parabolic Equations
- Regularity estimates for elliptic boundary value problems in Besov spaces
- Discontinuoushp-Finite Element Methods for Advection-Diffusion-Reaction Problems
- Finite Element Methods for Maxwell's Equations
- Adaptive Finite Element Methods for Parabolic Problems II: Optimal Error Estimates in $L_\infty L_2 $ and $L_\infty L_\infty $
- Adaptive Finite Element Methods for Parabolic Problems IV: Nonlinear Problems
- Adaptive Finite Element Methods for Parabolic Problems V: Long-Time Integration
- The characterization of functions arising as potentials
- Algorithmic formulation and numerical implementation of coupled electromagnetic‐inelastic continuum models for electromagnetic metal forming
- Galerkin Methods for Parabolic Equations
- Finite elements. Theory, fast solvers and applications in elasticity theory
This page was built for publication: A Galerkin method for mixed parabolic-elliptic partial differential equations