On nilpotency of matrices over antirings
From MaRDI portal
Publication:710869
DOI10.1016/j.laa.2010.06.003zbMath1202.15021OpenAlexW2084637837MaRDI QIDQ710869
Publication date: 22 October 2010
Published in: Linear Algebra and its Applications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.laa.2010.06.003
permanentnilpotent matrixsemiringantiringadjoint matricesprincipal permanental minorssimultaneous nilpotency
Determinants, permanents, traces, other special matrix functions (15A15) Matrices over special rings (quaternions, finite fields, etc.) (15B33) Eigenvalues, singular values, and eigenvectors (15A18) Semirings (16Y60)
Related Items
On simultaneously nilpotent antiring matrices ⋮ Bases in semimodules over commutative semirings ⋮ Maximal simultaneously nilpotent sets of matrices over antinegative semirings ⋮ On nilpotent subsemigroups of the matrix semigroup over an antiring. ⋮ Free sets and free subsemimodules in a semimodule
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Reduction of a nilpotent fuzzy matrix
- On nilpotent matrices over antirings
- Invertible and nilpotent matrices over antirings
- Inversion of matrices over a commutative semiring
- Linear and combinatorial optimization in ordered algebraic structures
- Linear operators strongly preserving \(r\)-potent matrices over semirings
- Minimax algebra
- A generalization of the all minors matrix tree theorem to semirings
- Bideterminants, arborescences and extension of the matrix-tree theorem to semirings
- Matrices over semirings
- Determinantal identities over commutative semirings
- On the nilpotent matrices over \(D_{01}\)-lattice
- On nilpotent matrices over distributive lattices
- A regularity criterion for complete matrix semirings
- On simultaneously nilpotent fuzzy matrices
- On nilpotent fuzzy matrices
- On nilpotent incline matrices
- Extreme preservers of maximal column rank inequalities of matrix sums over semirings
- Lattice matrices
- On the powers of matrices over a distributive lattice