A direct method for producing Hamiltonian structure of nonlinear evolution equations
From MaRDI portal
Publication:711904
DOI10.1016/J.CHAOS.2007.04.006zbMath1197.37075OpenAlexW2085974009MaRDI QIDQ711904
Publication date: 28 October 2010
Published in: Chaos, Solitons and Fractals (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.chaos.2007.04.006
Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.) (37K10) KdV equations (Korteweg-de Vries equations) (35Q53)
Cites Work
- A new loop algebra and its subalgebras
- Integrable systems of derivative nonlinear Schrödinger type and their multi-Hamiltonian structure
- The trace identity, a powerful tool for constructing the Hamiltonian structure of integrable systems
- An approach for constructing nonisospectral hierarchies of evolution equations
- A new loop algebra and a corresponding integrable hierarchy, as well as its integrable coupling
- A powerful approach to generate new integrable systems
- An approach to generate superextensions of integrable systems
- The quadratic-form identity for constructing the Hamiltonian structure of integrable systems
- A Liouville integrable Hamiltonian system associated with a generalized Kaup-Newell spectral problem
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: A direct method for producing Hamiltonian structure of nonlinear evolution equations