Pointwise multipliers of Besov spaces on Carnot-Carathéodory spaces
From MaRDI portal
Publication:714071
DOI10.1016/j.jmaa.2012.06.052zbMath1277.42012OpenAlexW2092070918MaRDI QIDQ714071
Publication date: 19 October 2012
Published in: Journal of Mathematical Analysis and Applications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jmaa.2012.06.052
Besov spacespace of homogeneous typepointwise multiplierCarnot-Carathéodory spaceCalderón reproducing formula
Function spaces arising in harmonic analysis (42B35) Multipliers for harmonic analysis in several variables (42B15)
Related Items (2)
Besov and Triebel-Lizorkin spaces on metric spaces: embeddings and pointwise multipliers ⋮ Pointwise multipliers on spaces of homogeneous type in the sense of coifman and Weiss
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- The \(\overline\partial_b\)-complex on decoupled boundaries in \(\mathbb C^n\)
- A theory of Besov and Triebel-Lizorkin spaces on metric measure spaces modeled on Carnot-Carathéodory spaces
- Lipschitz functions on spaces of homogeneous type
- Pointwise multipliers from the Hardy space to the Bergman space
- Pointwise multipliers of Besov spaces of smoothness zero and spaces of continuous functions.
- On pointwise multipliers for \(F_{p,q}^s (\mathbb{R}^n)\) in case \(\sigma_{p,q}< s< n/p\)
- Analyse harmonique non-commutative sur certains espaces homogènes. Etude de certaines intégrales singulières. (Non-commutative harmonic analysis on certain homogeneous spaces. Study of certain singular integrals.)
- Theory of Sobolev Multipliers
- Littlewood-Paley theory on spaces of homogeneous type and the classical function spaces
- A T(b) theorem with remarks on analytic capacity and the Cauchy integral
- Multiparameter Hardy space theory on Carnot-Carathéodory spaces and product spaces of homogeneous type
This page was built for publication: Pointwise multipliers of Besov spaces on Carnot-Carathéodory spaces