Decomposition theorems for \(Q_p\) spaces with small scale \(p\) on the unit ball of \(\mathbb C^n\)
From MaRDI portal
Publication:717330
DOI10.1016/S0252-9602(10)60134-8zbMath1240.32015OpenAlexW2094752162MaRDI QIDQ717330
Publication date: 29 September 2011
Published in: Acta Mathematica Scientia. Series B. (English Edition) (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/s0252-9602(10)60134-8
Linear operators on function spaces (general) (47B38) Other spaces of holomorphic functions of several complex variables (e.g., bounded mean oscillation (BMOA), vanishing mean oscillation (VMOA)) (32A37)
Related Items (4)
Bergman type operator on spaces of holomorphic functions in the unit ball of \(\mathbb{C}^n\) ⋮ A new formalization of Dirichlet-type spaces ⋮ Holomorphic Campanato spaces on the unit ball ⋮ \(\mathcal{N}(p,q,s)\)-type spaces in the unit ball of \(\mathbb{C}^n\). IV: Atomic decomposition, Gleason's problem and distance problems
This page was built for publication: Decomposition theorems for \(Q_p\) spaces with small scale \(p\) on the unit ball of \(\mathbb C^n\)