Minimal graphs in \(\mathbb H^n\times \mathbb R\) and \(\mathbb R^{n+1}\)
From MaRDI portal
Publication:717800
DOI10.5802/aif.2611zbMath1225.53060arXiv0908.4170OpenAlexW2315959285MaRDI QIDQ717800
Eric Toubiana, Ricardo Sa Earp
Publication date: 6 October 2011
Published in: Annales de l'Institut Fourier (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/0908.4170
Dirichlet problemconvex domainbarriertranslation hypersurfacevertical graphasymptotic boundaryminimal equationPerron processScherk hypersurface
Boundary value problems for second-order elliptic equations (35J25) Differential geometry of immersions (minimal, prescribed curvature, tight, etc.) (53C42)
Related Items
Existence of vertical ends of mean curvature $1/2$ in $\mathbb{H}^{2} ×\mathbb{R}$, A minimal stable vertical planar end in ℍ2× ℝ has finite total curvature, Minimal hypersurfaces in \(\mathbb {H}^n \times \mathbb {R}\), total curvature and index, Concentration of total curvature of minimal surfaces in \(\mathbb {H}^2\times \mathbb R\), Compact minimal vertical graphs with non-connected boundary in \(\mathbb{H}^{n}\times\mathbb{R}\), Constructions of \(H_r\)-hypersurfaces, barriers and Alexandrov theorem in \(\mathbb H^n\times\mathbb R\), All solutions of the CMC-equation in \({\mathbb H^n\times\mathbb R}\) invariant by parabolic screw motion, Minimal graphs in \(\mathrm{Nil}_3:\) existence and non-existence results, Classical Schwarz reflection principle for Jenkins-Serrin type minimal surfaces
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Minimal hypersurfaces in \(\mathbb {H}^n \times \mathbb {R}\), total curvature and index
- Complete minimal hypersurfaces in hyperbolic n-manifolds
- \(p\)-harmonic functions and the minimal graph equation in a Riemannian manifold
- An asymptotic theorem for minimal surfaces and existence results for minimal graphs in \({\mathbb H^2 \times \mathbb R}\)
- Complete minimal varieties in hyperbolic space
- Minimal surfaces in \(\mathbb{H}^2\times\mathbb{R}\).
- Interior gradients estimates and existence theorems for constant mean curvature graphs in \(M^n\times\mathbb R\)
- The Dirichlet problem for the minimal surface equation, with possible infinite boundary data, over domains in a Riemannian surface
- PARABOLIC AND HYPERBOLIC SCREW MOTION SURFACES IN ℍ2×ℝ
- Infinite boundary value problems for constant mean curvature graphs in ℍ<sup xmlns:m="http://www.w3.org/1998/Math/MathML" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> × ℝ and <b>S</b><sup xmlns:m="http://www.w3.org/1998/Math/MathML" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> × ℝ
- The Dirichlet problem for the minimal surface equation in higher dimensions.
- Existence and uniqueness of minimal graphs in hyperbolic space