Low-cost numerical method for solving a coefficient inverse problem for the wave equation in three-dimensional space
DOI10.1134/S0965542518040073zbMath1457.65081OpenAlexW2804003375WikidataQ129783364 ScholiaQ129783364MaRDI QIDQ722418
Alexander S. Leonov, Anatoly B. Bakushinsky
Publication date: 23 July 2018
Published in: Computational Mathematics and Mathematical Physics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1134/s0965542518040073
fast Fourier transformcoefficient inverse problemregularizing algorithmthree-dimensional wave equation
Hydro- and aero-acoustics (76Q05) Numerical methods for discrete and fast Fourier transforms (65T50) Numerical methods for inverse problems for initial value and initial-boundary value problems involving PDEs (65M32)
Related Items (5)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Iterative methods of stochastic approximation for solving non-regular nonlinear operator equations
- Two approaches to the solution of coefficient inverse problems for wave equations
- Approximate Global Convergence and Adaptivity for Coefficient Inverse Problems
- ON A POINT SOURCE IN AN INHOMOGENEOUS MEDIUM
This page was built for publication: Low-cost numerical method for solving a coefficient inverse problem for the wave equation in three-dimensional space