Finite vs. infinite decompositions in conformal embeddings
From MaRDI portal
Publication:728504
DOI10.1007/s00220-016-2672-1zbMath1405.17049arXiv1509.06512OpenAlexW3099410363MaRDI QIDQ728504
Victor G. Kac, Pierluigi Möseneder Frajria, Dražen Adamović, Ozren Perše, Paolo Papi
Publication date: 20 December 2016
Published in: Communications in Mathematical Physics (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1509.06512
Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras (17B67) Vertex operators; vertex operator algebras and related structures (17B69)
Related Items
On parafermion vertex algebras of 𝔰𝔩(2) and 𝔰𝔩(3) at level −3 2, On the classification of non-equal rank affine conformal embeddings and applications, The vertex algebras \(\mathcal{R}^{(p)}\) and \(\mathcal{V}^{(p)}\), Conformal embeddings of affine vertex algebras in minimal \(W\)-algebras. II: Decompositions, W-algebras for Argyres-Douglas theories, Invariant subalgebras of the small \(\mathcal{N} = 4\) superconformal algebra, Tensor category \(\mathrm{KL}_k (\mathfrak{sl}_{2n})\) via minimal affine \(W\)-algebras at the non-admissible level \(k = - \frac{2n + 1}{2}\), Kostant Pairs of Lie Type and Conformal Embeddings, Conformal embeddings of affine vertex algebras in minimal \(W\)-algebras. I: Structural results, On infinite order simple current extensions of vertex operator algebras, Conformal embeddings in affine vertex superalgebras, Tensor categories of affine Lie algebras beyond admissible levels, Generalized parafermions of orthogonal type, \(W\)-algebras as coset vertex algebras, On the representation theory of the vertex algebra L−5/2(sl(4))
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A realization of certain modules for the \(N = 4\) superconformal algebra and the affine Lie algebra \(a_{2}^{(1)}\)
- Quantum reduction and representation theory of superconformal algebras
- Decomposition rules for conformal pairs associated to symmetric spaces and Abelian subalgebras of \(\mathbb Z_{2}\)-graded Lie algebras
- Classical affine algebras
- Modular and conformal invariance constraints in representation theory of affine algebras
- Conformal embeddings of affine vertex algebras in minimal \(W\)-algebras. I: Structural results
- Some general results on conformal embeddings of affine vertex operator algebras
- Conformal embeddings of affine vertex algebras in minimal \(W\)-algebras. II: Decompositions
- On the triplet vertex algebra \(\mathcal W(p)\)
- Les sous-groupes fermes de rang maximum des groupes de Lie clos
- ISOTROPY REPRESENTATIONS, EIGENVALUES OF A CASIMIR ELEMENT, AND COMMUTATIVE LIE SUBALGEBRAS
- Conformal Embeddings and Simple Current Extensions
- Modular invariant representations of infinite-dimensional Lie algebras and superalgebras
- Coxeter and dual coxeter numbers
- JOSEPH IDEALS AND LISSE MINIMAL -ALGEBRAS
- $\boldsymbol{\mathcal{W}}$-algebras with Non-admissible Levels and the Deligne Exceptional Series
- Field Algebras
- FUSION RULES AND COMPLETE REDUCIBILITY OF CERTAIN MODULES FOR AFFINE LIE ALGEBRAS
- Integrable highest weight modules over affine superalgebras and Appell's function