Multi-step Runge-Kutta-Nyström methods for special second-order initial value problems
DOI10.1016/j.apnum.2016.11.002zbMath1355.65097OpenAlexW2555609410MaRDI QIDQ729986
Publication date: 23 December 2016
Published in: Applied Numerical Mathematics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.apnum.2016.11.002
order conditionsexplicit methodsnumerical resultB-seriesmulti-step Runge-Kutta-Nyström methodsspecial Nyström-seriesspecial second-order initial value problems
Nonlinear ordinary differential equations and systems (34A34) Numerical methods for initial value problems involving ordinary differential equations (65L05) Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations (65L06)
Related Items (4)
Uses Software
Cites Work
- Unnamed Item
- Multi-step hybrid methods for special second-order differential equations \(y^{\prime \prime}(t)=f(t,y(t))\)
- ERKN integrators for systems of oscillatory second-order differential equations
- Order conditions for ARKN methods solving oscillatory systems
- A Noumerov-type method with minimal phase-lag for the integration of second order periodic initial-value problems. II: Explicit method
- Explicit Numerov type methods with reduced number of stages.
- A class of explicit two-step hybrid methods for second-order IVPs
- Symmetric Multistip Methods for Periodic Initial Value Problems
- On accuracy and unconditional stability of linear multistep methods for second order differential equations
- The Order of Numerical Methods for Ordinary Differential Equations
- Order conditions for a class of two-step methods for y = f (x, y)
- P-stability and exponential-fitting methods for y = f(x,y)
- Geometric Numerical Integration
- An Algebraic Theory of Integration Methods
This page was built for publication: Multi-step Runge-Kutta-Nyström methods for special second-order initial value problems