On the decoding of binary cyclic codes with the Newton identities
From MaRDI portal
Publication:733502
DOI10.1016/j.jsc.2008.02.006zbMath1174.94023OpenAlexW2165211986MaRDI QIDQ733502
Jean-Charles Faugère, Magali Bardet, Daniel Augot
Publication date: 16 October 2009
Published in: Journal of Symbolic Computation (Search for Journal in Brave)
Full work available at URL: https://hal.inria.fr/inria-00509219/file/gbdecode-revised.pdf
Symbolic computation and algebraic computation (68W30) Gröbner bases; other bases for ideals and modules (e.g., Janet and border bases) (13P10) Cyclic codes (94B15)
Related Items (4)
Matrix-product structure of repeated-root cyclic codes over finite fields ⋮ Improved decoding of affine-variety codes ⋮ A Variant of the F4 Algorithm ⋮ Degröbnerization: a political manifesto
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Correcting errors and erasures via the syndrome variety
- A new efficient algorithm for computing Gröbner bases \((F_4)\)
- On the decoding of cyclic codes using Gröbner bases
- The Chen-Reed-Helleseth-Truong decoding algorithm and the Gianni-Kalkbrenner Gröbner shape theorem
- Ein algorithmisches Kriterium für die Lösbarkeit eines algebraischen Gleichungssystems
- New linear codes derived from binary cyclic codes of length 151
- Finding BCH error locator polynomials in one step
- Algebraic decoding of the (32, 16, 8) quadratic residue code
- General Error Locator Polynomials for Binary Cyclic Codes With <formula formulatype="inline"><tex>$t \le 2$</tex></formula> and <formula formulatype="inline"> <tex>$n < 63$</tex></formula>
- Studying the locator polynomials of minimum weight codewords of BCH codes
- The algebraic decoding of the (41, 21, 9) quadratic residue code
- Decoding the (73, 37, 13) quadratic residue code
- Use of Grobner bases to decode binary cyclic codes up to the true minimum distance
- General principles for the algebraic decoding of cyclic codes
- A new algorithm for finding minimum-weight words in a linear code: application to McEliece's cryptosystem and to narrow-sense BCH codes of length 511
- Decoding the (47,24,11) quadratic residue code
- Using Algebraic Geometry
- Fast algorithms for decoding the (23, 12) binary Golay code with four-error-correcting capability
- Cyclic decoding procedures for Bose- Chaudhuri-Hocquenghem codes
- Solving systems of algebraic equations by using gröbner bases
- Properties of Gröbner bases under specializations
This page was built for publication: On the decoding of binary cyclic codes with the Newton identities