An efficient algorithm for decomposing multivariate polynomials and its applications to cryptography
From MaRDI portal
Publication:733509
DOI10.1016/j.jsc.2008.02.005zbMath1175.12004OpenAlexW2112271215MaRDI QIDQ733509
Jean-Charles Faugère, Ludovic Perret
Publication date: 16 October 2009
Published in: Journal of Symbolic Computation (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jsc.2008.02.005
Lua error in Module:PublicationMSCList at line 37: attempt to index local 'msc_result' (a nil value).
Related Items (6)
On Reverse-Engineering S-Boxes with Hidden Design Criteria or Structure ⋮ Key-recovery attacks on \(\mathsf{ASASA}\) ⋮ Implicit white-box implementations: white-boxing ARX ciphers ⋮ Common composites of triangular polynomial systems and hash functions ⋮ On Multivariate Homogeneous Polynomial Decomposition ⋮ A recombination algorithm for the decomposition of multivariate rational functions
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On multivariate rational function decomposition
- Functional decomposition of polynomials: the tame case
- Functional decomposition of polynomials: the wild case
- Résolution des systèmes d'équations algébriques
- Multivariate polynomial decomposition
- Bruno Buchberger's PhD thesis 1965: An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal. Translation from the German
- Computation of unirational fields
- Ein algorithmisches Kriterium für die Lösbarkeit eines algebraischen Gleichungssystems
- General polynomial decomposition and the s-1-decomposition are NP-Hard
- Cryptanalysis of 2R− Schemes
- Polynomial decomposition algorithms
- Decomposing attacks on asymmetric cryptography based on mapping compositions
This page was built for publication: An efficient algorithm for decomposing multivariate polynomials and its applications to cryptography