A numerical approach to solve an inverse problem in lubrication theory
DOI10.1007/S13398-013-0130-XzbMath1432.65140OpenAlexW2074891172MaRDI QIDQ740711
Publication date: 9 September 2014
Published in: Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A: Matemáticas. RACSAM (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s13398-013-0130-x
inverse problemfinite element methodtrust-region algorithmcavitationElrod-Adams modeljournal bearing
Lubrication theory (76D08) Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs (65M60) Numerical methods for inverse problems for initial value and initial-boundary value problems involving PDEs (65M32)
Related Items (2)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- The transition between the Stokes equations and the Reynolds equation: A mathematical proof
- Influence of multiscale roughness patterns in cavitated flows: Applications to journal bearings
- Duality methods for solving variational inequalities
- Numerical solution of cavitation problems in lubrication
- Characteristics method for the formulation and computation of a free boundary cavitation problem
- Une méthode du type caractéristique pour la résolution d'un problème de lubrification hydrodynamique en régime transitoire
- Line search algorithms with guaranteed sufficient decrease
- An Interior Trust Region Approach for Nonlinear Minimization Subject to Bounds
- Numerical simulation of a lubricated Hertzian contact problem under imposed load.
This page was built for publication: A numerical approach to solve an inverse problem in lubrication theory