Some a priori estimates for a class of operators in the Heisenberg group
From MaRDI portal
Publication:741294
DOI10.1007/S10231-012-0313-7zbMath1297.35257OpenAlexW2030644204MaRDI QIDQ741294
Publication date: 11 September 2014
Published in: Annali di Matematica Pura ed Applicata. Serie Quarta (Search for Journal in Brave)
Full work available at URL: http://link.springer.com/article/10.1007/s10231-012-0313-7/fulltext.html
maximum principlea priori estimatesHeisenberg grouprearrangementsfully nonlinear operatorsconvex/concave operators
A priori estimates in context of PDEs (35B45) PDEs on Heisenberg groups, Lie groups, Carnot groups, etc. (35R03)
Related Items (1)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- An introduction to the Heisenberg group and the sub-Riemannian isoperimetric problem
- Sulle migliori costanti di maggiorazione per una classe di equazioni ellittiche degeneri
- On the structure of finite perimeter sets in step 2 Carnot groups
- Rearrangements and an obstacle problem for degenerate variational inequalities
- Elliptic partial differential equations of second order
- Notion of convexity in Carnot groups
- Metric normal and distance function in the Heisenberg group
- Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérées
- Regularity of the distance function to smooth hypersurfaces in some two-step Carnot groups
- Maximum and Comparison Principles for Convex Functions on the Heisenberg Group
- Comparison Principles for subelliptic equations of Monge-Ampere type
- Stratified Lie Groups and Potential Theory for their Sub-Laplacians
- On the best possible character of the 𝐿^{𝑄} norm in some a priori estimates for non-divergence form equations in Carnot groups
- Maximum Principle, Nonhomogeneous Harnack Inequality, and Liouville Theorems forX-Elliptic Operators
- Rectifiability and perimeter in the Heisenberg group
- Surface measures in Carnot-Carathéodory spaces
This page was built for publication: Some a priori estimates for a class of operators in the Heisenberg group