Euler systems for Rankin-Selberg convolutions of modular forms
DOI10.4007/annals.2014.180.2.6zbMath1315.11044arXiv1212.4056OpenAlexW2102958515WikidataQ115288120 ScholiaQ115288120MaRDI QIDQ742912
David Loeffler, Sarah Livia Zerbes, Antonio Lei
Publication date: 19 September 2014
Published in: Annals of Mathematics. Second Series (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1212.4056
modular formRankin-Selberg convolution\(p\)-adic \(L\)-functionEuler systemHida familySelmer groupBeilinson-Flach elements
Special values of automorphic (L)-series, periods of automorphic forms, cohomology, modular symbols (11F67) (p)-adic theory, local fields (11F85) Galois representations (11F80) (Equivariant) Chow groups and rings; motives (14C15)
Related Items (43)
Uses Software
Cites Work
- A \(p\)-adic regulator map and finiteness results for arithmetic schemes
- Construction of a homomorphism concerning Euler systems for an elliptic curve
- On a class of nearly holomorphic automorhic forms
- Modular forms in characteristic \(\ell\) and special values of their \(L\)-functions
- Continuous étale cohomology
- Relative Chow groups
- Iwasawa theory and \(p\)-adic heights
- Cohomologie étale. Seminaire de géométrie algébrique du Bois-Marie SGA 4 1/2 par P. Deligne, avec la collaboration de J. F. Boutot, A. Grothendieck, L. Illusie et J. L. Verdier
- Systèmes d'Euler \(p\)-adiques et théorie d'Iwasawa. (\(p\)-adic Euler systems and Iwasawa theory.)
- On the semi-simplicity of the \(U_p\)-operator on modular forms
- On the Tate-Shafarevich groups over cyclotomic fields of an elliptic curve with supersingular reduction. I.
- Modularity of the Rankin-Selberg \(L\)-series, and multiplicity one for \(\mathrm{SL}(2)\)
- Ordinary \(p\)-adic étale cohomology groups attached to towers of elliptic modular curves. II
- A finiteness theorem for the symmetric square of an elliptic curve
- Two theorems on modular curves
- Construction of some families of 2-dimensional crystalline representations
- On some Bruhat decomposition and the structure of the Hecke rings of \(p\)-adic Chevalley groups
- Automorphic forms on \(\mathrm{GL}(2)\). Part II
- Wach modules and critical slope p-adic L-functions
- Iwasawa theory and p-adic L-functions over ${\mathbb Z}_{p}^{2}$-extensions
- Diagonal cycles and Euler systems I: A $p$-adic Gross-Zagier formula
- on l-adic representations attached to modular forms II
- On Certain L-Functions
- Higher algebraic K-theory: I
- The special values of the zeta functions associated with cusp forms
- Les Schémas de Modules de Courbes Elliptiques
- Critical slope p ‐adic L ‐functions
- Euler Systems
- Beilinson-Flach elements and Euler systems I: Syntomic regulators and 𝑝-adic Rankin 𝐿-series
- Overconvergent modular symbols and $p$-adic $L$-functions
- Efficient Computation of Rankin p-Adic L-Functions
- Syntomic regulators and \(p\)-adic integration. I: Rigid syntomic regulators
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Euler systems for Rankin-Selberg convolutions of modular forms