Multidimensional dyadic Kurzweil-Henstock- and Perron-type integrals in the theory of Haar and Walsh series
DOI10.1016/J.JMAA.2014.08.002zbMath1301.26011OpenAlexW1995216003MaRDI QIDQ743216
Francesco Tulone, Valentin A. Skvortsov
Publication date: 23 September 2014
Published in: Journal of Mathematical Analysis and Applications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jmaa.2014.08.002
Haar seriesWalsh seriesderivation basescoefficients problemKurzweil-Henstock dyadic integralPerron dyadic integralSaks continuity of interval functions
Fourier series in special orthogonal functions (Legendre polynomials, Walsh functions, etc.) (42C10) Denjoy and Perron integrals, other special integrals (26A39)
Related Items (9)
Cites Work
- Derivation bases on the real line. I
- A constructive variant of the definition of an HD-integral
- Une théorie de Denjoy des martingales dyadiques. (A Denjoy theory of dyadic martingales)
- Uniqueness sets for multiple Haar series
- On continuous major and minor functions for the \(n\)-dimensional Perron integral
- Generalized Hake property for integrals of Henstock type
- Henstock type integral in harmonic analysis on zero-dimensional groups
- Recovery of the coefficients of multiple Haar and Walsh series
- Henstock integration in the plane
- Recent developments in the theory of Haar series
- Uniqueness and Quasi-Measures on the Group of Integers of A p-Series Field
- Several properties of generalized multivariate integrals and theorems of the du Bois-Reymond type for Haar series
- ON CERTAIN CLASSES OF SETS OF UNIQUENESS OF MULTIPLE WALSH SERIES
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Multidimensional dyadic Kurzweil-Henstock- and Perron-type integrals in the theory of Haar and Walsh series