Gerbal central extensions of reductive groups by \(\mathcal{K}_3\)
From MaRDI portal
Publication:745153
DOI10.1016/j.jalgebra.2015.07.034zbMath1342.19003arXiv1407.4113OpenAlexW2121047211MaRDI QIDQ745153
Publication date: 13 October 2015
Published in: Journal of Algebra (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1407.4113
\(K\)-cohomology\(\mathcal K_3\)-central extensionBrylinski-Deligne spectral sequencesplit reductive groups
Linear algebraic groups over arbitrary fields (20G15) Algebraic cycles (14C25) Central extensions and Schur multipliers (19C09) Applications of methods of algebraic (K)-theory in algebraic geometry (14C35)
Cites Work
- The first Suslin homology sheaf of a split simply connected semisimple algebraic group
- Torsion in cohomology of compact Lie groups and Chow rings of reductive algebraic groups
- The algebraic \(K\)-theory of the classical groups and some twisted forms
- Central extensions of reductive groups by \(K_2\).
- Transgressive loop group extensions
- Séminaire de Géométrie Algébrique Du Bois-Marie 1967--1969. Groupes de monodromie en géométrie algébrique (SGA 7 I). Dirigé par A. Grothendieck avec la collaboration de M. Raynaud et D. S. Rim. Exposés I, II, VI, VII, VIII, IX
- Gerbal Representations of Double Loop Groups
- 2-Gerbes and 2-Tate Spaces
- The Arason invariant and mod 2 algebraic cycles
- Formal loops II: A local Riemann–Roch theorem for determinantal gerbes
- Loop spaces, characteristic classes and geometric quantization
This page was built for publication: Gerbal central extensions of reductive groups by \(\mathcal{K}_3\)