A parametric model fitting time to first event for overdispersed data: application to time to relapse in multiple sclerosis
DOI10.1007/S10985-011-9207-ZzbMath1322.62089OpenAlexW2082745236WikidataQ34074336 ScholiaQ34074336MaRDI QIDQ746130
Eric Henninger, Maria Pia Sormani, Paola Siri
Publication date: 15 October 2015
Published in: Lifetime Data Analysis (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s10985-011-9207-z
negative binomial distributionrecurrent eventsmixed Poisson processestime to eventmultiple sclerosis relapses
Applications of statistics to biology and medical sciences; meta analysis (62P10) Point estimation (62F10)
Related Items (1)
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- On the extended Polya process and some of its interpretations
- Non-life insurance mathematics. An introduction with stochastic processes.
- Negative Binomial Regression
- Zur statistischen analyse des gemischten Poissonprozesses, gestützt auf Schadeneintrittszeitpunkte
- Applied Probability and Queues
This page was built for publication: A parametric model fitting time to first event for overdispersed data: application to time to relapse in multiple sclerosis