Random deviations of ergodic sums for the Pascal adic transformation in the case of the Lebesgue measure
From MaRDI portal
Publication:748505
DOI10.1007/s10958-015-2540-0zbMath1342.37009OpenAlexW2179517869MaRDI QIDQ748505
Publication date: 29 October 2015
Published in: Journal of Mathematical Sciences (New York) (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s10958-015-2540-0
Binomial coefficients; factorials; (q)-identities (11B65) Dynamical systems and their relations with probability theory and stochastic processes (37A50) Nonsingular (and infinite-measure preserving) transformations (37A40)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A realization of the Pascal automorphism in the concatenation graph and the sum-of-digits function \(s_2(n)\)
- Asymptotics of distributions of random walks on multidimensional Pascal graphs and on root lattices
- The Pascal automorphism has a continuous spectrum
- Asymptotic behavior of the scaling entropy of the Pascal adic transformation
- The Takagi function: a survey
- The Kruskal-Katona function, Conway sequence, Takagi curve, and Pascal adic
- On the set of points where Lebesgue's singular function has the derivative zero
- Sur la fonction sommatoire de la fonction 'somme des chiffres'
- Absolute summability of Walsh-Fourier series
- Nowhere differentiable solutions of a system of functional equations
- The Pascal adic transformation is loosely Bernoulli
- Singular functions with applications to fractal dimensions and generalized Takagi functions
- De Rham's singular function and related functions
- A theorem on the Markov periodic approximation in ergodic theory
- Invariant measures and orbits of dissipative transformations
- Digital Sums and Functional Equations
- Remarks on the remainder in Birkhoff's ergodic theorem
- Invariance principles and Gaussian approximation for strictly stationary processes
- SELF-SIMILAR CORRECTIONS TO THE ERGODIC THEOREM FOR THE PASCAL-ADIC TRANSFORMATION
- Dynamical properties of the Pascal adic transformation
- Sur la théorie de la mesure dans les espaces combinatoires et son application au calcul des probabilités. I. Variables indépendantes
- An Explicit Expression for Binary Digital Sums