A theorem relating a certain generalized Weyl fractional integral with the Laplace transform and a class of Whittaker transforms
From MaRDI portal
Publication:750690
DOI10.1016/0022-247X(90)90222-2zbMath0714.33008OpenAlexW2022661375MaRDI QIDQ750690
R. M. Jain, Som Prakash Goyal, Hari M. Srivastava
Publication date: 1990
Published in: Journal of Mathematical Analysis and Applications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0022-247x(90)90222-2
Fractional derivatives and integrals (26A33) Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.) (33C45) Multiple integral transforms (44A30)
Related Items
Cites Work
- Abelian theorems for Whittaker transforms
- Some Abelian theorems for the distributional H-transformation
- A unification of generalizations of the Laplace transform and generalized functions
- The integration of certain products of the multivariable H-function with a general class of polynomials
- Certain properties of a distributional generalized Whittaker transform
- Fractional integral operators involving a general class of polynomials
- Asymptotic behaviour of the H-transform in the complex domain
- Operational Representations of Whittaker's Confluent Hypergeometric Function and Weber's Parabolic Cylinder Function
- What is the Laplace Transform?
- On a generalized integral transform. II
- On a generalized integral transform. II
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item