Mordell-Weil lattices and Galois representation. III
DOI10.3792/pjaa.65.300zbMath0715.14017OpenAlexW4251418011MaRDI QIDQ752111
Publication date: 1989
Published in: Proceedings of the Japan Academy. Series A (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.3792/pjaa.65.300
elliptic curvesMordell-Weil groupelliptic surfacesdel Pezzo surfacesGalois representationsWeil heightcubic formsMordell-Weil latticesHasse zeta functionArtin L-functiondeformation theory of isolated singularities
Galois theory (11R32) Elliptic curves over global fields (11G05) General ternary and quaternary quadratic forms; forms of more than two variables (11E20) Elliptic curves (14H52) Zeta functions and related questions in algebraic geometry (e.g., Birch-Swinnerton-Dyer conjecture) (14G10) Elliptic surfaces, elliptic or Calabi-Yau fibrations (14J27) Arithmetic varieties and schemes; Arakelov theory; heights (14G40)
Related Items (3)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Séminaire sur les singularités des surfaces. Centre de Mathématiques de l'École Polytechnique, Palaiseau 1976-1977
- Mordell-Weil lattices and Galois representation. I
- The Galois representation of type \(E_8\) arising from certain Mordell-Weil groups
- Simple singularities and simple algebraic groups
- Variation of the Canonical Height of a Point Depending on a Parameter
This page was built for publication: Mordell-Weil lattices and Galois representation. III