Gauss sums for function fields
From MaRDI portal
Publication:752761
DOI10.1016/S0022-314X(05)80040-XzbMath0716.11057OpenAlexW2161739127MaRDI QIDQ752761
Publication date: 1991
Published in: Journal of Number Theory (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/s0022-314x(05)80040-x
Arithmetic theory of algebraic function fields (11R58) Finite ground fields in algebraic geometry (14G15) Other character sums and Gauss sums (11T24) Drinfel'd modules; higher-dimensional motives, etc. (11G09)
Related Items (8)
Special functions and Gauss-Thakur sums in higher rank and dimension ⋮ Twisting eigensystems of Drinfeld Hecke eigenforms by characters ⋮ Special functions and twisted L-series ⋮ Arithmetic of Gamma, Zeta and Multizeta Values for Function Fields ⋮ On root numbers connected with special values of \(L\)-functions over \(\mathbb{F}_ q(T)\) ⋮ Shtukas and Jacobi sums ⋮ Unnamed Item ⋮ An alternate approach to solitons for \(\mathbb F_q [t\)]
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Gamma functions for function fields and Drinfeld modules
- The arithmetic of function fields. II: The 'cyclotomic' theory
- Gauss sums for \({\mathbb F}_ q[T\)]
- The Hilbert class field in function fields
- On geometric \({\mathbb{Z}}_ p\)-extensions of function fields
- The class number of cyclotomic function fields
- Good reduction of elliptic modules
- Algebraic function fields with small class number
- Explicit Class Field Theory for Rational Function Fields
- ELLIPTIC MODULES
This page was built for publication: Gauss sums for function fields