Proper holomorphic maps from weakly pseudoconvex domains
From MaRDI portal
Publication:752909
DOI10.1215/S0012-7094-90-06014-4zbMath0716.32017OpenAlexW2068546287MaRDI QIDQ752909
Berit Stensones Henriksen, Alan V. Noell
Publication date: 1990
Published in: Duke Mathematical Journal (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1215/s0012-7094-90-06014-4
Related Items
Peak points for pseudoconvex domains: A survey ⋮ Continuous Proper Holomorphic Maps into Bounded Domains ⋮ Immersions and Embeddings in Domains of Holomorphy ⋮ Unnamed Item
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Inner functions and boundary values in \(H^\infty(\Omega)\) and \(A(\Omega)\) in smoothly bounded pseudoconvex domains
- A construction of inner functions on the unit ball in \(C^ p\)
- Applications holomorphes propres continues de domaines strictement pseudoconvexes de \({\mathbb{C}}^ n\) dans la boule unité de \({\mathbb{C}}^{n+1}\). (On the extension of proper holomorphic mappings from strictly pseudoconvex domains in \({\mathbb{C}}^ n\) into the unit ball of \({\mathbb{C}}^{n+1})\)
- Sur le plongement des domaines faiblement pseudoconvexes dans des domaines convexes
- Embeddings and proper holomorphic maps of strictly pseudoconvex domains into polydiscs and balls
- Fonctions holomorphes bornées sur la boule unite de \(C^ n\).
- Finitely generated ideals in \(A(\Omega)\)
- Peak points on weakly pseudoconvex domains
- \(\mathcal C^\infty\) peak functions for pseudoconvex domains of strict type
- Pseudoconvex domains with real-analytic boundary
- A construction of peak functions on weakly pseudoconvex domains
- The ball in \({\mathbb{C}}^ n\) is a closed complex submanifold of a polydisc
- A pseudo-convex domain not admitting a holomorphic support function
- Interpolation from curves in pseudoconvex boundaries
- Proper holomorphic mappings from strongly pseudoconvex domains in $\mathsf{C}^2$ to the unit polydisc in $\mathsf{C}^2$.
- Embedding Strictly Pseudoconvex Domains Into Balls
- A geometric characterization of points of type m on real submanifolds of \(\mathbb{C}^n\)