Dirichlet convolution of cotangent numbers and relative class number formulas
From MaRDI portal
Publication:753858
DOI10.1007/BF01301678zbMath0717.11048MaRDI QIDQ753858
Publication date: 1990
Published in: Monatshefte für Mathematik (Search for Journal in Brave)
Full work available at URL: https://eudml.org/doc/178498
cyclotomic fieldramificationrelative class numberStickelberger elementsDirichlet convolutionabelian number fieldcotangent numbers
Class numbers, class groups, discriminants (11R29) Cyclotomic extensions (11R18) Other abelian and metabelian extensions (11R20)
Related Items
A recursion formula for the relative class number of the \(p^ n\)-th cyclotomic field ⋮ On the factorization of the relative class number in terms of Frobenius divisions
Cites Work
- Unnamed Item
- Unnamed Item
- Ein v. Staudt-Clausenscher Satz für periodische Bernoullizahlen. (A theorem of von Staudt-Clausen type for periodic Bernoulli numbers)
- Character coordinates and annihilators of cyclotomic numbers
- An index formula for the relative class number of an abelian number field
- On the Stickelberger ideal and the circular units of an abelian field
- Stickelberger elements and cotangent numbers
- A class number formula for cyclotomic fields
- Über die Hauptordnung der ganzen Elemente eines abelschen Zahlkörpers.
- The ring of integers of an abelian number field.