Extremal plurisubharmonic functions and pluripolar sets in \({\mathbb C}^2\)
From MaRDI portal
Publication:755001
DOI10.1007/BF01363896zbMath0417.31001WikidataQ125262955 ScholiaQ125262955MaRDI QIDQ755001
Publication date: 1980
Published in: Mathematische Annalen (Search for Journal in Brave)
Full work available at URL: https://eudml.org/doc/163402
Harmonic, subharmonic, superharmonic functions in two dimensions (31A05) Axiomatic potential theory (31D05)
Related Items (2)
New solution of a problem of Kolmogorov on width asymptotics in holomorphic function spaces ⋮ Proof of a conjecture of Zahariuta concerning a problem of Kolmogorov on the \(\epsilon\)-entropy
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Levisches Problem und Rungescher Satz für Teilgebiete Steinscher Mannigfaltigkeiten
- Subharmonicity for uniform algebras
- On the equivalence between locally polar and globally polar sets for plurisubharmonic functions on \(C^n\)
- Variational properties of the complex Monge-Ampère equation. I: Dirichlet principle
- Regularity of the Dirichlet problem for the complex Monge-Ampère equation
- Variational Properties of the Complex Monge-Ampere Equation. II. Intrinsic Norms
- TRANSFINITE DIAMETER, ČEBYŠEV CONSTANTS, AND CAPACITY FOR COMPACTA IN $ \mathbf{C}^n$
- Foliations and complex monge-ampère equations
- SEPARATELY ANALYTIC FUNCTIONS, GENERALIZATIONS OF HARTOGS' THEOREM, AND ENVELOPES OF HOLOMORPHY
- Delta-plusharmonic functions.
This page was built for publication: Extremal plurisubharmonic functions and pluripolar sets in \({\mathbb C}^2\)