Sur le théorème local des cycles invariants. (On the local invariant cycle theorem)
From MaRDI portal
Publication:755799
DOI10.1215/S0012-7094-90-06107-1zbMath0722.14002MaRDI QIDQ755799
Francisco Guillén, Vicente Navarro Aznar
Publication date: 1990
Published in: Duke Mathematical Journal (Search for Journal in Brave)
Variation of Hodge structures (algebro-geometric aspects) (14D07) Algebraic cycles (14C25) Transcendental methods, Hodge theory (algebro-geometric aspects) (14C30)
Related Items
Nearby Cycles and the Dold–Kan Correspondence ⋮ Mixed Hodge Structures Applied to Singularities ⋮ Signs in weight spectral sequences, monodromy-weight conjectures, log Hodge symmetry and degeneration of surfaces ⋮ Limiting mixed Hodge structures on the relative log de Rham cohomology groups of a projective semistable log smooth degeneration ⋮ Quasimodular Hecke algebras and Hopf actions ⋮ Number of Jordan blocks of the maximal size for local monodromies ⋮ Polarizations on limiting mixed Hodge structures ⋮ Weight-monodromy conjecture for \(p\)-adically uniformized varieties ⋮ On 𝑝-adic intermediate Jacobians ⋮ BCOV invariants of Calabi-Yau manifolds and degenerations of Hodge structures ⋮ The Hodge theory of algebraic maps ⋮ Hodge theory of degenerations. I: Consequences of the decomposition theorem ⋮ The decomposition theorem, perverse sheaves and the topology of algebraic maps ⋮ Toric Regulators ⋮ Spectral sequence of weights in Hyodo-Kato cohomology
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Variation of mixed Hodge structure. I
- Modules de Hodge polarisables. (Polarisable Hodge modules)
- Sur la théorie de Hodge-Deligne. (On the Hodge-Deligne theory)
- La conjecture de Weil. II
- Hyperrésolutions cubiques et descente cohomologique. (La plupart des exposés d'un séminaire sur la théorie de Hodge-Deligne, Barcelona (Spain), 1982)
- Limits of Hodge structures
- Degeneration of Kähler manifolds
- Variation of Hodge structure: The singularities of the period mapping
- Théorie de Hodge. II. (Hodge theory. II)
- Théorie de Hodge. III
- Le calcul différentiel et intégral sur une variété analytique complexe. (Problème de Cauchy. III.)