Almost Hermitian symmetric manifolds. II: Differential invariants
From MaRDI portal
Publication:757853
DOI10.1215/S0012-7094-91-06306-4zbMath0724.53020MaRDI QIDQ757853
Publication date: 1991
Published in: Duke Mathematical Journal (Search for Journal in Brave)
Hermitian symmetric spacealmost Hermitian manifoldtwistor theorySpencer cohomologyalmost Lagrangian structures
Related Items
Geometric theory of Weyl structures ⋮ Quaternionic complexes ⋮ Differential invariants and curved Bernstein-Gelfand-Gelfand sequences ⋮ Tractor calculus, BGG complexes, and the cohomology of cocompact Kleinian groups ⋮ Metric projective geometry, BGG detour complexes and partially massless gauge theories ⋮ Almost Hermitian symmetric manifolds. I: Local twistor theory ⋮ New generalized Verma modules and multilinear intertwining differential operators
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- The c and a-theorems and the local renormalisation group
- Almost Hermitian symmetric manifolds. I: Local twistor theory
- The n-homology of Harish-Chandra modules: Generalizing a theorem of Kostant
- Verma modules and differential conformal invariants
- The Kazhdan-Lusztig conjecture for generalized Verma modules
- Conformally invariant differential operators on Minkowski space and their curved analogues
- Moduln mit einem höchsten Gewicht
- Representations of real reductive Lie groups
- A generalization of the Bernstein-Gelfand-Gelfand resolution
- Thomas's structure bundle for conformal, projective and related structures
- Remarks on 'Lie algebra cohomology and the generalized Borel-Weyl theorem' by B. Kostant
- Ambi-twistors and Einstein's equations
- Conformal gravity, the Einstein equations and spaces of complex null geodesics
- Kazhdan-Lusztig Polynomials for Hermitian Symmetric Spaces
- Conformally Invariant Operators: Singular Cases
- CONFORMALLY INVARIANT OPERATORS OF STANDARD TYPE
- Geometry Associated with Semisimple Flat Homogeneous Spaces
- A conformally invariant Maxwell gauge