The eigenvalue problem \((A-\lambda B)x = 0\) for symmetric matrices of high order
From MaRDI portal
Publication:758850
DOI10.1016/0045-7825(74)90039-5zbMath0271.65027OpenAlexW2326012825MaRDI QIDQ758850
Publication date: 1974
Published in: Computer Methods in Applied Mechanics and Engineering (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0045-7825(74)90039-5
Related Items
Super-matrix methods, An improved iterative optimization technique for the leftmost eigenpairs of large symmetric matrices, Computation of minimum eigenvalue through minimization of rayleigh's quotient for large sparse matrices using vector computer:, The method of coordinate overrelaxation for \((A-\lambda B)x = 0\), An accelerated subspace iteration method, A simultaneous coordinate relaxation algorithm for large, sparse matrix eigenvalue problems, Computational methods of linear algebra, Simultaneous Rayleigh-quotient minimization methods for Ax=lambdaBx, 𝑆𝑂𝑅-methods for the eigenvalue problem with large sparse matrices, Rustishauser's modified method for computing the eigenvalues of symmetric matrices, Ein neues Gradientenverfahren zur simultanen Berechnung der kleinsten oder größten Eigenwerte des allgemeinen Eigenwertproblems, Iterative eigenvalue algorithms based on convergent splittings, Two algorithms for treating \(Ax=\lambda Bx\), [https://portal.mardi4nfdi.de/wiki/Publication:3926873 Simultane Iterationsverfahren f�r gro�e allgemeine Eigenwertprobleme], A Lanczos-type algorithm for the generalized eigenvalue problem Ax=lambdaBx, Extreme eigenvalues of large sparse matrices by Rayleigh quotient and modified conjugate gradients
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- New iterative methods for solution of the eigenproblem
- An iterative procedure for the calculation of the lowest real eigenvalue and eigenvector of a nonsymmetric matrix
- Modification of Nesbet's algorithm for the iterative evaluation of eigenvalues and eigenvectors of large matrices
- The iterative calculation of several of the lowest or highest eigenvalues and corresponding eigenvectors of very large symmetric matrices
- 𝑆𝑂𝑅-methods for the eigenvalue problem with large sparse matrices
- Berechnung von Eigenwerten und Eigenvektoren normaler Matrizenpaare durch Ritz‐Iteration