Stickelberger's criterion, Galois algebras, and tame ramification in algebraic number fields
From MaRDI portal
Publication:762550
DOI10.1016/0022-4049(84)90063-XzbMath0558.12001MaRDI QIDQ762550
Publication date: 1984
Published in: Journal of Pure and Applied Algebra (Search for Journal in Brave)
normal integral basiscyclotomic extensionStickelberger elementscongruence conditionstamely ramifiedarithmetic classificationcyclic Galois extensionGalois R-algebrasHarrison groupresolvant
Cyclotomic extensions (11R18) Ramification and extension theory (11S15) Quaternion and other division algebras: arithmetic, zeta functions (11R52) Galois theory and commutative ring extensions (13B05)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- A matrix criterion for normal integral bases
- Integral representations afforded by ambiguous ideals in some abelian extensions
- Théorie de la descente et algèbres d'Azumaya
- The Group of Unramified Kummer Extensions of Prime Degree
- Arithmetic and Galois module structure for tame extensions.
- A Cohomological Description of Abelian Galois Extensions
- A Theorem of Harrison, Kummer Theory, and Galois Algebras
- Class Group Relations in Cyclotomic Fields