Contact harmonic maps
From MaRDI portal
Publication:763056
DOI10.1016/j.difgeo.2011.10.004zbMath1247.53078OpenAlexW2037379022WikidataQ115356767 ScholiaQ115356767MaRDI QIDQ763056
Publication date: 8 March 2012
Published in: Differential Geometry and its Applications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.difgeo.2011.10.004
Global differential geometry of Lorentz manifolds, manifolds with indefinite metrics (53C50) Differential geometric aspects of harmonic maps (53C43) Analysis on CR manifolds (32V20)
Related Items (4)
On the regularity of weak contact \(p\)-harmonic maps ⋮ Levi harmonic maps of contact Riemannian manifolds ⋮ The Bochner-type formula and the first eigenvalue of the sub-Laplacian on a contact Riemannian manifold ⋮ Contact semi-Riemannian structures in CR geometry: some aspects
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On the regularity of weak contact \(p\)-harmonic maps
- On the curvature groups of a CR manifold
- Smooth solutions of degenerate Laplacians on strictly pseudoconvex domains
- Mok-Siu-Yeung type formulas on contact locally sub-symmetric spaces
- Boundary behaviour of the complex Monge-Ampère equation
- Geometric superrigidity
- The Bergman kernel and biholomorphic mappings of pseudoconvex domains
- Harmonic maps and strictly pseudoconvex CR manifolds.
- Differential geometry and analysis on CR manifolds
- On the pseudo-Hermitian sectional curvature of a strictly pseudoconvex CR manifold
- On the geometry of tangent hyperquadric bundles: CR and pseudoharmonic vector fields
- Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérées
- Yang–Mills fields on CR manifolds
- On Sparling's Characterization of Fefferman Metrics
- Variational Problems on Contact Riemannian Manifolds
- Subelliptic harmonic maps
- Pseudoharmonic maps from nondegenerate CR manifolds to Riemannian manifolds
- Riemannian geometry of contact and symplectic manifolds
- Foliated CR manifolds
This page was built for publication: Contact harmonic maps